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Abstract 
 

The fundamental considerations and assumptions in laboratory equilibrium 
tests on soils in the triaxial cell are examined using the principles of virtual work and 
thermodynamics.  Compliance with the laws of thermodynamics is essential and the 
first law of thermodynamics necessitates that the work equation, thus the stresses, 
may be derived from the thermodynamic potential.  At equilibrium the 
thermodynamic potential is a minimum and it is shown that this can be written in a 
similar form for both isotropic and anisotropic loading conditions but for the latter the 
mean stress replaces the isotropic pressure.  The significance of the extensive variable 
terms making up the thermodynamic potential is also described.  The analysis is 
applicable to soils at any degree of saturation.     
 
Isotropic loading conditions 
 

The thermodynamic concepts of internal energy and entropy may without 
modification be applied to soils.  Under equilibrium conditions the internal energy U 
for an isotropically loaded specimen of volume V may be written as,  
 
[1] U = TS - pV  
 
where, T is the absolute temperature of the specimen 
 S is the entropy of the specimen 
 p is the applied pressure  
  
This assumes no chemical potential, which could lead to osmotic suction, and ignores 
the gravitational field.  For any subsequent change in the variables of state S and V, 
maintaining the respective conjugate parameters T and p constant, the internal energy 
given by Equation [1] represents the Euler thermodynamic potential (Sposito, 1981, 
Callen, 1965).  For an infinitesimal change in thermal and work energy as a result of 
changes dS and dV,  
 
[2] dU = dQ + dW = TdS – pdV  
 



 

where, dQ is the heat added to the specimen 
 dW = -pdV is the virtual work done to the specimen  

dS is the increase in entropy 
 dV is the change in  volume (dV<0 for compression giving dW>0) 
 dU is the change in internal energy 
   
Equation [2] is written to reflect the situation where work is done to the specimen and 
to be consistent with volumetric compression, and accordingly length and radius 
reduction, corresponding to positive strain increments for positive compressive 
stresses.     
 
The work analysis considers a soil specimen in the triaxial cell and treats the 
specimen as a mass with no distinction as to its degree of saturation or composition 
and is thus applicable to soils at any degree of saturation.  The analysis thus considers 
only the applied total stresses and does not consider ‘effective’ interparticle stresses 
or fluid pressures in the soil specimen and says nothing about the specimen’s history.   
 
The triaxial cell is taken as acting as a thermal and volume ‘reservoir’ with the cell 
wall taken as a rigid adiabatic barrier allowing no heat transfer with the surroundings.  
The cell and the specimen contained therein are referred to as the system.  Two 
extremes of soil test may be carried out on the soil specimen.  The specimen may be 
allowed to exchange air and water with an external measuring system under drained 
conditions, or an undrained test under closed conditions with no matter exchange may 
be carried out.  The latter is considered here and it is assumed that at equilibrium and 
during the infinitesimal changes considered that there is no transfer of mass or heat 
from or to the system and in particular there is no exchange with external pressure or 
volume measurement devices.  The cell reservoir (water) applies an isotropic loading 
to the soil specimen pw contained in an impermeable sheath, which prevents direct 
contact and mass interchange between the reservoir and the soil, but imparts no 
loading.  The soil specimen has a responsive pressure pm.  Under the above 
conditions, the internal energy change for the system dU is given by Equation [3] 
(Sposito, 1981).  
 
 [3] dU = dUm + dUw = dQm + dWm + dQw + dWw = TmdSm - pmdVm + TwdSw – 

         pwdVw 
 
where, dUm and dUw are the changes in internal energy of the soil (mass) and  

reservoir (water in cell) respectively  
dQm = TmdSm is the change in heat of the soil 
dQw = TwdSw is the change in heat of the reservoir 
dWm = pmdVm is the work done on the soil 
dWw = pwdVw is the work done on the reservoir  
Tm and Tw are the absolute temperatures of the soil and reservoir respectively 
dSm and dSw are the changes in entropy of the soil and reservoir respectively 
dVm and dVw are the changes in volumes of the soil mass and reservoir 
respectively 



 

It is assumed in the analysis that the infinitesimal changes are reversible and are thus 
essentially virtual.   
 
There is no change in total entropy of the system as the cell wall acts as an adiabatic 
barrier, thus dSm = -dSw.  There is also no change in volume of the system for a rigid 
cell wall thus, dVm = -dVw.  In addition, assuming the establishment of thermal 
equilibrium within the system Tm = Tw.  Under these conditions Equation [3] may be 
written as, 
 
[4] dU = -(pm - pw) dVm 
 
Equation [4] describes a virtual process with an infinitesimal change in the soil 
volume dVm.  For equilibrium dU = 0 as there is a requirement for the 
thermodynamic potential U given by Equation [1] to be a minimum at equilibrium.  
The equation confirms that under isotropic loading conditions, proved the 
assumptions outlined are satisfied, a prime requirement in comparing equilibrium 
conditions in the triaxial cell with theoretical predictions is that the pressure imposed 
by the water in the cell pw is balanced by the pressure exerted within the soil sample 
pm.  
 
Anisotropic loading conditions 
 

Now consider the case of a specimen of height h, cross sectional area A and 
radius r subject to a more general class of loading with a total axial stress s1 and a 
cell pressure s3 such that the mean applied stress p = (s1 + 2s3)/3 and the deviator 
stress q = (s1 - s3).  The work equation is give by dW = – s3dV - (s1 - s3)Adh.  The 
coincidence of the principal axes of stress and strain-increment is assumed.  It is also 
assumed that the application of a deviatoric stress from the ram in the triaxial cell 
does not influence the thermodynamics of the system.  For an infinitesimal, virtual 
transfer of thermal and work energy under similar conditions to the assumptions for 
isotropic loading, the internal energy change for the system dU is given by:  

  
[5] dU = dUm + dUw = dQm + dWm + dQw + dWw = TmdSm – s3mdVm - (s1m - 

s3m) Adhm + TwdSw - s3wdVw - (s1w - s3w)Adhw 
 
where, s1m and s1w are the total axial stresses of the soil and cell loading system  

respectively 
s3m and s3w are the total lateral stresses of the soil and cell loading system  
respectively 
dhm and dhw are the axial compression of the soil specimen and displacement 
of the cell loading system respectively  
 

As previously, for no change in total entropy of the system dSm = -dSw and for no net 
change in volume of the system, dVm = -dVw.  It is also necessary to assume 
compatibility of axial displacement, dhm = -dhw.  In addition, Tm = Tw if thermal 



 

equilibrium of the system is established and, as previously, dU = 0.  Under these 
conditions, Equation [5] may be written as, 
 
[6] 0 = – (s3m - s3w)dVm - [(s1m - s3m) - (s1w - s3w)] Adhm 
Dividing throughout by the volume of the specimen Vm, gives 
 
[7] 0 = (s3m - s3w)(elm + 2erm) + [(s1m - s3m) - (s1w - s3w)] elm  
 
where, for stress and strain positive in compression (Schofield and Wroth, 1968), 
 evm = -dVm/Vm = (elm + 2erm) 

elm = -dhm/h 
erm = -drm/r 

 drm is the change in radius of the soil specimen 
 
Re-arranging [7] it is readily shown that, 
 
[8] 0 = (pm-pw)(elm + 2erm) + (qm-qw) 2(elm-erm)/3 
 
where, pm = (s1m + 2s3m)/3  

qm = (s1m - s3m)   
pw = (s1w + 2s3w)/3  
qw = (s1w - s3w) 

 
Equilibrium analysis vertically and radially gives s1m = s1w and s3m = s3w and thus 
from Equation [8] pm = pw and qm = qw.  However, this does not necessarily follow 
directly from Equation [8] unless the influence of the mean stress and deviator stress 
in the virtual work equation are treated independently.   
 
Virtual work input and thermodynamic potential 
 

Compliance with the laws of thermodynamics is a required feature of any soil 
model if it is to be based on sound principles (Houlsby et al, 2005).  In accordance 
with the first law of thermodynamics it is necessary that the work equation thus the 
stresses can be derived from a thermodynamic potential.  In soils this is complicated 
by the general anisotropic loading conditions.  The work input dWm to the soil 
specimen per unit soil volume under the anisotropic undrained loading considered is 
given by, 
 
[9] dWm = pm(elm + 2erm) + qm2(elm-erm) = -pm dVm - qm 2 (dhm – drm)   

  Vm           3           Vm          3     h        r      
In addition, the change in internal energy dUm may be written as, 
 
[10] dUm = TmdSm + dWm   
 
Substituting for dWm from Equation [9], 
  



 

[11] dUm = TmdSm - pm dVm - qm 2 Vm (dhm – drm)  
                    3          h         r      
 
The associated extensive thermodynamic potential Um before the increment of virtual 
work determined from Equation [11] is given by, 
 
[12]   Um = TmSm – pm Vm    
 
Equation [12] is in the same form as the Euler Equation [1] for isotropic loading but 
pm represents the mean stress.  There is no term in the potential for the deviator stress 
as on integration of Equation [11] the deviator strain term reduces to zero.  
Alternatively, the appropriateness of Equation [12] may be demonstrated by 
differentiation, but it is not appropriate to merely write dUm = TmdSm – pmdVm as this 
is only true for isotropic loading conditions.  Rewriting Equation [12] as [12a], 
 
[12a] Um = TmSm – 1 (s1m + 2s3m)Vm = TmSm – 1 (s1m -s3m )Ahm - s3mVm.   

          3          3 
 
Substituting A = prm2 and noting that rm = Nhm where N is the ratio of radius to 
height of the specimen, integration correctly leads to dUm = TmdSm – s3mdVm - (s1m - 
s3m)Adhm = TmdSm + dWm.   
 
The analysis indicates that the mean stress term may be written as a deviator stress 
term plus an isotropic stress term arising from the cell pressure as shown in Equation 
[12a].  Thus the thermodynamic potential for anisotropic loading given by Equation 
[12] leads to the correct work equation.  The fact that a term for qm does not appear in 
Equation [12] suggests that at equilibrium it is appropriate to treat the mean stress and 
deviator stress independently, as suggested in relation to Equation [8] in assessing the 
imposed stresses and stresses in the soil specimen in the triaxial cell. 
 
The terms Um, Sm and Vm in Equation [12], and thus the thermodynamic potential, are 
extensive variables (Sposito, 1981).  Combining an intensive variable with the 
conjugate extensive variable such as in the term pmVm results in an extensive 
variable.  A property of the extensive variables is that they are ‘additive’ in the sense 
that, for example, the total volume of the phases in a soil is the sum of the volumes of 
the individual phases.  Similarly, the term pmVm is additive.  This is made up of the 
thermodynamic potential terms s1m Vm/3 and 2s3mVm/3.  The inclusion of a deviator 
stress term in the thermodynamic potential Equation [12] would appear to violate the 
principle.      

 
Examination of Equation [12] indicates that enthalpy Hm =  pmVm + Um is also an 
extensive variable and its additive property is used by Murray (2002) to derive an 
equation describing the stress regime in unsaturated soils under equilibrium 
conditions.          
  



 

Equilibrium assumptions and conditions 
 

The foregoing analysis indicates that the conditions in the triaxial cell for 
compatibility between experimental and theoretical equilibrium are: pm = pw, qm = qw, 
dVm = -dVw, Tm = Tw, dUm = -dUw and dSm = -dSw.  This assumes the triaxial cell can 
be treated as an isolated system where adiabatic conditions exist at the rigid outer cell 
wall.  Equilibrium also necessitates no mass exchange between the soil and the 
reservoir, no mass loss or gain by the system and no chemical imbalance leading to a 
chemical potential.  
 
Experimentally, mechanical equilibrium is also described by no further measurable 
changes within the soil specimen.  However, this may not be a necessary requirement 
for pressure equilibrium and may take longer to become established particularly in 
unsaturated soils where internal phase pressure and strain interactions may take 
longer to equilibrate though overall pressure equilibrium may apparently be satisfied.  
Barden and Sides (1967) concluded that in unsaturated soils there is evidence to 
suggest that equilibrium in terms of Henry’s law may require a considerable time 
interval, far greater than that in the absence of soil particles.             
 
Equating the applied stresses to those experienced by the soil, qw applied to the soil 
specimen is balanced by an equal and opposite qm from the soil specimen leading to 
the conclusion that at equilibrium qw = (s1m - s3m).  The deviator stress is the net 
resistance to shearing as a result of interaction of the soil particles.  Similarly, there is 
a balance between the mean stress pw applied to the soil specimen and an equal and 
opposite pm from the soil leading to the conclusion that pw = (s1m + 2s3m)/3.  This is 
made up of the net effect of the mean stresses arising from interaction of the soil 
particles along with other spherical pressures such as the water and air pressure and 
the spherical phase interaction effects of surface tension, adsorbed water, dissolved 
air and water vapour.  The foregoing describes the normal assumption that the 
external pressure and loading measurements are directly related to the pressures and 
stresses in the soil. 
 
Equilibrium is governed by a thermodynamic potential.  This is a minimum at 
equilibrium and can be written in a similar form for both isotropic and anisotropic 
loading conditions but for the latter the mean stress replaces the isotropic pressure.  
The significance of the extensive variable terms making up the thermodynamic 
potential is briefly described and their significance is expanded upon in a separate 
paper by Murray and Sivakumar in this conference.   
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